83 research outputs found

    Network Geometry Inference using Common Neighbors

    Full text link
    We introduce and explore a new method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O(t4)O(t^4) running time to map a network of tt nodes, versus O(t3)O(t^3) in the link-based method. But we also develop a hybrid method with O(t3)O(t^3) running time, which combines the common-neighbors and link-based approaches, and explore a heuristic that reduces its running time further to O(t2)O(t^2), without significant reduction in the mapping accuracy. We apply this method to the Autonomous Systems (AS) Internet, and reveal how soft communities of ASes evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASes. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step towards understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections

    Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces

    Full text link
    We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greedy packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution

    Link persistence and conditional distances in multiplex networks

    Full text link
    Recent progress towards unraveling the hidden geometric organization of real multiplexes revealed significant correlations across the hyperbolic node coordinates in different network layers, which facilitated applications like trans-layer link prediction and mutual navigation. But are geometric correlations alone sufficient to explain the topological relation between the layers of real systems? Here we provide the negative answer to this question. We show that connections in real systems tend to persist from one layer to another irrespectively of their hyperbolic distances. This suggests that in addition to purely geometric aspects the explicit link formation process in one layer impacts the topology of other layers. Based on this finding, we present a simple modification to the recently developed Geometric Multiplex Model to account for this effect, and show that the extended model can reproduce the behavior observed in real systems. We also find that link persistence is significant in all considered multiplexes and can explain their layers' high edge overlap, which cannot be explained by coordinate correlations alone. Furthermore, by taking both link persistence and hyperbolic distance correlations into account we can improve trans-layer link prediction. These findings guide the development of multiplex embedding methods, suggesting that such methods should be accounting for both coordinate correlations and link persistence across layers

    Fundamental dynamics of popularity-similarity trajectories in real networks

    Full text link
    Real networks are complex dynamical systems, evolving over time with the addition and deletion of nodes and links. Currently, there exists no principled mathematical theory for their dynamics -- a grand-challenge open problem in complex networks. Here, we show that the popularity and similarity trajectories of nodes in hyperbolic embeddings of different real networks manifest universal self-similar properties with typical Hurst exponents H0.5H \ll 0.5. This means that the trajectories are anti-persistent or 'mean-reverting' with short-term memory, and they can be adequately captured by a fractional Brownian motion process. The observed behavior can be qualitatively reproduced in synthetic networks that possess a latent geometric space, but not in networks that lack such space, suggesting that the observed subdiffusive dynamics are inherently linked to the hidden geometry of real networks. These results set the foundations for rigorous mathematical machinery for describing and predicting real network dynamics

    Curvature and temperature of complex networks

    Full text link
    We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the Internet into the hyperbolic plane, and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of Internet routing

    NodeSig{\rm N{\small ode}S{\small ig}}: Random Walk Diffusion meets Hashing for Scalable Graph Embeddings

    Full text link
    Learning node representations is a crucial task with a plethora of interdisciplinary applications. Nevertheless, as the size of the networks increases, most widely used models face computational challenges to scale to large networks. While there is a recent effort towards designing algorithms that solely deal with scalability issues, most of them behave poorly in terms of accuracy on downstream tasks. In this paper, we aim at studying models that balance the trade-off between efficiency and accuracy. In particular, we propose NodeSig{\rm N{\small ode}S{\small ig}}, a scalable embedding model that computes binary node representations. NodeSig{\rm N{\small ode}S{\small ig}} exploits random walk diffusion probabilities via stable random projection hashing, towards efficiently computing embeddings in the Hamming space. Our extensive experimental evaluation on various graphs has demonstrated that the proposed model achieves a good balance between accuracy and efficiency compared to well-known baseline models on two downstream tasks

    Embedding-aided network dismantling

    Full text link
    Optimal percolation concerns the identification of the minimum-cost strategy for the destruction of any extensive connected components in a network. Solutions of such a dismantling problem are important for the design of optimal strategies of disease containment based either on immunization or social distancing. Depending on the specific variant of the problem considered, network dismantling is performed via the removal of nodes or edges, and different cost functions are associated to the removal of these microscopic elements. In this paper, we show that network representations in geometric space can be used to solve several variants of the network dismantling problem in a coherent fashion. Once a network is embedded, dismantling is implemented using intuitive geometric strategies. We demonstrate that the approach well suits both Euclidean and hyperbolic network embeddings. Our systematic analysis on synthetic and real networks demonstrates that the performance of embedding-aided techniques is comparable to, if not better than, the one of the best dismantling algorithms currently available on the market.Comment: 13 pages, 5 figures, 1 table + SM available at https://cgi.luddy.indiana.edu/~filiradi/Mypapers/SM_geo_percolation.pd

    Geometric Correlations Mitigate the Extreme Vulnerability of Multiplex Networks against Targeted Attacks

    Get PDF
    We show that real multiplex networks are unexpectedly robust against targeted attacks on high-degree nodes and that hidden interlayer geometric correlations predict this robustness. Without geometric correlations, multiplexes exhibit an abrupt breakdown of mutual connectivity, even with interlayer degree correlations. With geometric correlations, we instead observe a multistep cascading process leading into a continuous transition, which apparently becomes fully continuous in the thermodynamic limit. Our results are important for the design of efficient protection strategies and of robust interacting networks in many domains
    corecore